ILDG Algorithm Glossary for qcdsfAcceleratedHMC: Accelerated Hybrid Monte Carlo Algorithm

Dirk Pleiter (QCDSF Collaboration)

18 December 2005

The simulations of QCD with $N_{\rm f} = 2$ flavours of degenerate, non-peturbatively improved Wilson-fermions have been realised using an accelerated Hybrid Monte Carlo algorithm [1].

The standard action is modified in the following way by introducing additional auxiliary pseudo-fermion fields:

$$S_1[U,\phi^{\dagger},\phi] = S_G[U] + S_{det}[U] + \phi^{\dagger} W (Q^{\dagger}Q)^{-1} W^{\dagger}\phi + \chi^{\dagger} (W^{\dagger}W)^{-1}\chi,$$
(1)

where

$$W = Q + \rho. \tag{2}$$

The special case $\rho = 0$ corresponds to the unmodified action.

Two different time-scales are used for different segments of the action:

$$V_M(\tau) = V_{IR}\left(\frac{\tau}{2}\right) \cdot \left[V_{UV}\left(\frac{\tau}{2M}\right)V_Q\left(\frac{\tau}{M}\right)V_{UV}\left(\frac{\tau}{2M}\right)\right]^M \cdot V_{IR}\left(\frac{\tau}{2}\right) \tag{3}$$

Evolution takes place at two different time scales τ and τ_1 . The ratio between both time scales is $M = \tau/\tau_1$, where M is an integer. The special case M = 1 corresponds to the ordinary leap-from integrator.

The following splitting of the action is used:

$$S_{\rm UV} = S_G[U] + S_{det}[U] + \chi^{\dagger} (W^{\dagger}W)^{-1} \chi,$$

$$S_{\rm IR} = \phi^{\dagger} W (Q^{\dagger}Q)^{-1} W^{\dagger} \phi$$
(4)

To solve equations of type $M \cdot \chi = \phi$ the Conjugate Gradient algorithm is used. The algorithm is iterated until the residuum vector $r = M \cdot \chi - \phi$ fulfils the condition |r| < R, where R is the target residuum.

The algorithm is controlled by the following parameters:

Parameter	XML Tag	Comment
au	<stepsize></stepsize>	Step size
$N_{ au}$	<numbersteps></numbersteps>	Number of steps per trajectory
M	<timescaleratio></timescaleratio>	Time scale ratio
ho	<rho></rho>	Auxiliary pseudo-fermion parameter
R	<solverresiduum></solverresiduum>	Solver residuum

References

[1] A. Ali Kahn et al. (QCDSF collaboration), "Accelerating the Hybrid Monte Carlo algorithm," Phys.Lett. B564 (2003) 235-240.