
QPACE system software: torus

A. Nobile, D. Pleiter

Id: syssw-torus.tex 3739 2010-07-17 17:50:20Z pleiter

Contents

1 Introduction 4

1.1 Terminology . 4

1.2 Software stack . 4

2 Topology 5

2.1 Definitions/conventions 5

2.2 Information . 6

3 Communication attributes 7

3.1 Addressing . 7

4 Low-level API: tnw 8

4.1 Reference Guide: User functions 8

4.1.1 Initialisation . 8

4.1.2 Buffer management 8

4.1.3 Communication operations 8

4.1.4 Memory management 9

4.1.5 Topology . 9

4.2 Reference Guide: Data structures in user functions 10

4.2.1 tnw_topo_t . 10

4.3 Reference Guide: System/internal functions 10

4.3.1 DCR registers interface 10

4.3.2 PHY control and monitoring 11

4.3.3 Link control and management 12

4.3.4 Topology . 12

4.3.5 Other . 13

4.4 Examples . 13

4.4.1 PPU program . 13

4.4.2 SPU program . 13

4.4.3 Compiling the program 14

5 Programming Rules 15

2

A Torus network initialisation 16

A.1 Overview . 16

A.2 PHY reset rst-phy . 16

A.3 PHY interface configuration and XGMII FIFO reset cfg-ifp/cfg-ifr 16

A.4 Link reset and PHY counter reset rst-lnk 17

A.5 Remove off-line mode . 17

B Partitioning examples 18

C Pending tasks and issues 19

QPACE system software: torus 3

1 Introduction

1.1 Terminology

Packet : Within the PowerXCell 8i processor and in the torus network data
is transported in packets of 128 Bytes.

Message : Set of data sent from one node to another node. Must be a multiple
of 128 Bytes. Note that message should be considered as a user
concept as the QPACE torus network only communicates packets.

1.2 Software stack

The torus system software stack consists of the following layers: low-level
library tnw, mid-level library torus. Additionally, high-level layers are
planned.

This library implements a low-level API which comprises a simple soft-tnw library
ware layer to access the torus network with minimal abstraction.

The main functionality added by this mid-level API is the mapping fromtorus library
colour to Cartesian coordinates.

4

2 Topology

2.1 Definitions/conventions

Absolute coordinates define a node-card position by backplane numberAbsolute coordinates
bp = 0, . . . , 7, 8, . . . and the node-card’s relative position on the backplane
nc = 0, . . . , 31. The following ordering principle applies: (bp0, nc0) <
(bp1, nc1) if bp0 < bp1 or bp0 == bp1&&nc0 < nc_1.

The 3-dimensional colour coordinate system defines the position of theColour coordinates
node-card within the partition. Directions are defined according to the
hardware links. By convention blue is the slowest and red the fastest
running index.1

A partition is defined by providing the absolute coordinates of the nodePartition
with the smallest absolute coordinate (bp0, nc0), which we define to be the
partition origin, and the absolute coordinate of the node in the opposite
corner (bp1, nc1) such that bp0 (bp1) and nc0 (nc1).

In a case where the number of nodes in blue direction Nb > 1 additionallyBlue cabling
the blue cabling has to be defined:

Cabling Description
r1 Single rack configuration
r2 Double rack configuration
r4 Quad rack configuration

It is assumed that cabling ri (i = 1, 2, 4) is such that in rack k with
k mod i = 0 and k mod i = i − 1 the backplanes in the front and back
side of the racks are connected.

The following partitioning rules apply:Partitioning rule

1. The partition corners are defined such that bp0 ≤ bp1 and nc0 ≤
nc1.

2. It is assumed that nodes are always allocated such that in any colour
direction the torus is closed. Special cases:

Trivial closure : Extension in one or more directions may be 1.

False two : Extension is 2 without both nodes being connected by 2 links.

The following rules apply when mapping absolute and colour coordinates:Mapping

Partition origin : By convention the node-card with the smallest absolute coordinates
is taken as origin with colour coordinates (0, 0, 0).

Red direction : In red direction the nodes are by conventioned arranged from left
to right (machine front/back view), i.e. if nc-<bp>-<nc> = (b, g, 0)
then nc-<bp>-<nc+i> = (b, g, i) with i = 0, . . . , Nr − 1 and Nr =
1, 2, 4, 8.

Green direction : In green direction the nodes are by conventioned arranged clockwise
(machine front/back view). An example is shown in Fig. 2.1.

Blue direction : In blue direction the nodes are by conventioned arranged clockwise
(machine top view).

1 E.g., a partition comprising one fully populated backplane has size 1 × 4 × 8.

5

(b,1,r)

(b,2,r)(b,3,r)

(b,0,r)

Figure 2.1: Colour coordinates of partition with Ng = 4.

A partition extending from nc-17-04 to nc-21-13 has size (2, 2, 2) andExample:
the node’s absolute coordinates are mapped to colour coordinates as fol-
lows:

Absolute coordinate Colour coordinate
nc-17-04 (0,0,0)

nc-17-05 (0,0,1)

nc-17-12 (0,1,0)

nc-17-13 (0,1,1)

nc-21-04 (1,0,0)

nc-21-05 (1,0,1)

nc-21-12 (1,1,0)

nc-21-13 (1,1,1)

For more examples see B.

2.2 Information

At the level of the low-level API the following information is provided:Low-level API

• Absolute position of the partition in terms of the absolute coordi-
nates of nodes at two adjecent corners of the partition plus a blue
cabling flag.

• Absolute node-card position.2

• Relative node-card position of the node-card within this partition
in colour coordinates.

• Map of colour direction as well as PHY number and interface con-
figuration3

2 Information is derived from MAC address.
3 Information is derived from knowledge of the absolute position of the partition and

the node-card and the blue cabling flag.

6 QPACE system software: torus

3 Communication attributes

3.1 Addressing

The address where a packet will be written on the receiver side is given
by the sum of the following addresses:

Name Size Alignment Description

Base address 32 bit 128 Byte Address of Local Store or
start address of receive buffer
in main memory.

Local offset 23 bit 128 Byte Local offset provided with
credit by receiver.

Remote offset 18 bit 128 Byte Remote offset defined by
sender. If a message of size
n·128 Bytes with n > 1 is sent
then the hardware automat-
ically increments the remote
offset for each packet.

7

4 Low-level API: tnw

4.1 Reference Guide: User functions

4.1.1 Initialisation

Initialise the tnw library. Note that on PPU function must be calledtnw_init

before starting any SPU threads.

PPU version:

int tnw_init()

SPU version:

int tnw_init(id)

unsigned long long id Thread identifier

Initialize receive handler.tnw_init_rx

void tnw_init_rx(rx, phy, channel)

tnw_rx_t *rx Pointer to receive handler
unsigned int phy PHY index
unsigned int channel Virtual channel

Clean-up routine.tnw_finalize

Provided on SPU only.

int tnw_finalize

4.1.2 Buffer management

Set base address of receive buffer. If receive buffer is in main memorytnw_credit_base

then addr refers to page address. If receive buffer is in local store then
addr is an offset with respect to address 0x0 of the local store. addr must
be 128-byte aligned.

void tnw_credit_base(phy, channel, addr)

unsigned int phy PHY index
unsigned int channel Virtual channel
unsigned int addr Page address or offset

4.1.3 Communication operations

Provide credit to NWP.tnw_credit

void tnw_credit(rx, addr, size, ctag)

tnw_rx_t* rx Pointer to receive handler
unsigned int addr Receive buffer address relative to base address
unsigned int size Size of credit
unsigned int msgtag Message tag

Non-blocking check whether notification has arrived.tnw_test_notify

void tnw_test_notify(rx, ctag)

tnw_rx_t* rx Pointer to receive handler
unsigned int msgtag Message tag

Blocking check whether notification has arrived.tnw_wait_notify

8

void tnw_wait_recv(rx, ctag)

tnw_rx_t* rx Pointer to receive handler
unsigned int ctag Communication tag

Send message.tnw_put

Provided on SPU only.

void tnw_put(phy, channel, txbuf, offset, size, dmatag)

unsigned int phy PHY/link number
unsigned int channel Virtual channel ID
void* txbuf Pointer to TX buffer
unsigned int offset Remote offset
unsigned int size Message size
unsigned int dmatag DMA tag

Function only returns if no DMA operation with given DMA tag has nottnw_wait_put

yet completed.

SPU only.

void tnw_wait_put(dmatag)

unsigned int dmatag

Check whether DMA operation to move data to TX link completed.tnw_test_put

unsigned int tnw_test_put(dmatag)

unsigned int dmatag DMA tag

4.1.4 Memory management

Allocate RX handler.tnw_rx_alloc

tnw_rx_t* tnw_rx_alloc()

Free RX handler previously allocated using tnw_rx_alloc().tnw_rx_free

void tnw_rx_free(rx)

tnw_rx_t* rx RX handler

Pin given page.tnw_lock_page

Available on PPU only.

void tnw_lock_page(addr)

unsigned int addr Page address

Remove lock for given page.tnw_unlock_page

Available on PPU only.

void tnw_unlock_page(addr)

unsigned int addr Page address

4.1.5 Topology

Initialises content of struct instantiated by user with topology informa-tnw_get_topology

tion.

Available on PPU only.

void tnw_get_topology(tnw_topo_t* topo)

tnw_topo_t *topo Reference to struct containing topology information

Returns information on absolute node-card position.tnw_get_nc_pos

Available on PPU only.

QPACE system software: torus 9

tnw_nc_pos_t tnw_get_apos()

Return physical ID of SPU.tnw_get_spe_phys_id

Available on SPU only.

unsigned int tnw_get_spe_phys_id()

4.2 Reference Guide: Data structures in user functions

4.2.1 tnw_topo_t

The data structure containing the topology information is defined as fol-
lows:

struct {
tnw_nc_pos_t apos0; /* partition root (abs. coordinates) */

tnw_nc_pos_t apos1; /* opposite partition corner */

unsigned int bc; /* blue cabling flag */

tnw_nc_pos_t apos; /* node-card position (abs. position) */

int r_size; /* partition size (col. coordinates) */

int g_size;

int b_size;

int r_coord; /* node-card position (col. coordinates) */

int g_coord;

int b_coord;

int rp_lnk; /* index link in plus red direction */

int rm_lnk; /* index link in minus red direction */

tnw_if_mode_t rp_ifm; /* redundant/primary interface */

tnw_if_mode_t rm_ifm;

int gp_lnk; /* index link in plus green direction */

int gm_lnk; /* index link in minus green direction */

tnw_if_mode_t gp_ifm; /* redundant/primary interface */

tnw_if_mode_t gm_ifm;

int bp_lnk; /* index link in plus blue direction */

int bm_lnk; /* index link in minus blue direction */

tnw_if_mode_t bp_ifm; /* redundant/primary interface */

tnw_if_mode_t bm_ifm;

}

4.3 Reference Guide: System/internal functions

The following functions are used within the library or by system tools
and should not be called by user application programs.

4.3.1 DCR registers interface

Read from DCR register.tnw_reg_read

unsigned int tnw_reg_read(addr)

unsigned int addr DCR register address

10 QPACE system software: torus

Write to DCR register.tnw_reg_write

void tnw_reg_write(addr, data)

unsigned int addr DCR register address
unsigned int data Value

Read from DCR register of a particular TX or RX link.tnw_{tx|rx}_read

unsigned int tnw_{tx|rx}_read(link, reg)

unsigned int link Link index
unsigned int reg DCR register address

Write to DCR register of a particular TX or RX link.tnw_{tx|rx}_write

void tnw_{tx|rx}_write(link, reg, data)

unsigned int link Link index
unsigned int addr DCR register address
unsigned int data Value

4.3.2 PHY control and monitoring

Read from PHY register via MDIO bustnw_mdio_read

unsigned int tnw_mdio_read(phy, reg)

unsigned int phy PHY index
unsigned int reg PHY register

Write to PHY register via MDIO bustnw_mdio_write

void tnw_mdio_write(phy, reg, data)

unsigned int phy PHY index
unsigned int reg PHY register
unsigned int data value

Perform reset of PHY. Returns ’0’ if DCM locked or ’1’ otherwise.tnw_reset_phy

void tnw_reset_phy(phy)

unsigned int phy PHY index

Perform reset of the PHY’s XGMII FIFO.tnw_reset_xgmii_fifo

unsigned int tnw_reset_xgmii_fifo(phy)

unsigned int phy PHY index

Reset PHY’s performance counters.tnw_reset_phy_counter

unsigned int tnw_reset_phy_counter(phy)

unsigned int phy PHY index

Configure PHY interface.tnw_config_if

void tnw_config_if(phy, pr)

unsigned int phy PHY index
tnw_if_mode_t pr primary/redundant interface selector

IF_PRIMARY or IF_REDUNDANT

Select primary or secondary PHY interface.tnw_set_pr

unsigned int tnw_set_pr(phy, pr)

unsigned int phy PHY index
tnw_if_mode_t pr primary/redundant interface selector

IF_PRIMARY or IF_REDUNDANT

Enable/disable pre-emphasis on high-speed transmit interface.tnw_set_preemphasis

QPACE system software: torus 11

unsigned int tnw_set_preemphasis(phy, en)

unsigned int phy PHY index
unsigned int en Selector (0=disabled, otherwise enabled)

Set differential swing on high-speed transmit interface1tnw_set_swing

unsigned int tnw_set_swing(phy, val)

unsigned int phy PHY index
unsigned int val value

Update receiver equalization settings for all lanes:2tnw_set_equalization

• 00: no equalization

• 01: full equalization

• 11: half equalization

unsigned int tnw_set_pr(phy, pr)

unsigned int phy PHY index
unsigned int eq Equalisation setting

Set or unset PHY’s RX_CLK_CFG configuration bit to switch off/on receivertnw_set_clkcfg

clocks RX_CLK_[1-3]

unsigned int tnw_set_clkcfg(phy, val)

unsigned int phy PHY index
unsigned int val 0=on, 1=off

4.3.3 Link control and management

Reset linktnw_reset_link

void tnw_reset_link(lnk)

unsigned int lnk link index

Move link out of offline statetnw_remove_offline

void tnw_remove_offline(lnk)

unsigned int lnk link index

4.3.4 Topology

Write content of structure containing topology information to kernel mod-tnw_set_topo

ule.

void tnw_set_topo(topo)

tnw_topo_t* topo Pointer to topology structure

Copy topology information stored in kernel module to topology informa-tnw_get_topo

tion structure.

void tnw_get_topo(topo)

tnw_topo_t* topo Pointer to topology structure

Routine calculates colour coordinates from absolute node-card coordi-tnw_topo_create

nates.

1 See table 40 and 41 in [2].
2 See p. 126 in [3]

12 QPACE system software: torus

void tnw_topo_create(apos0, apos1, bc, apos, topo)

tnw_nc_pos_t apos0 Node-card with smallest absolute coordinates
tnw_nc_pos_t apos1 Node-card with largest absolute coordinates
int bc Cabling index
tnw_nc_pos_t apos Current node-cards absolute coordinate
tnw_topo_t* topo Pointer to topology structure

Return physical ID of SPU.get_spu_phys_id

Available on SPU only.

unsigned int get_spu_phys_id(ctx)

spe_context_ptr_t ctx Reference to thread context

4.3.5 Other

Internal routine to initialize device access.tnw_device_init

Provided on PPU only.

int tnw_device_init(dcr, iwc)

unsigned char **dcr Pointer to pointer to DCR memory map
unsigned char **iwc Pointer to pointer to IWC memory map

4.4 Examples

4.4.1 PPU program

#include <tnw_ppu.h>

int main(int argc, char *argv[])

{
tnw_topo_t topo;

...

/* Initialization of libtnw *BEFORE* starting spu threads */

tnw_init();Library initialisation

tnw_get_topology(&topo);Topology setup
printf("Absolute NC position bp=%d nc=%d n",

topo.apos.bp, topo.apos.nc);

...Program execution
}

4.4.2 SPU program

#include <tnw_spu.h>

/* must be global unless tnw_alloc_rx() is used */

tnw_rx_t rx;RX handler

/* Must be global to fullfil alignment requirements */

unsigned int txBuf[4096] __attribute__((aligned(128)));Send buffer

/* Must be volatile and global */

volatile unsigned int rxBuf[4096] __attribute__((aligned(128)));Receive buffer

QPACE system software: torus 13

int main(unsigned long long id, unsigned long long argp,

unsigned long long envp)

{
unsigned int lnk, ch, msgSize;

unsigned int dmaTag, msgTag;

tnw_init(id);Initialisation

dmaTag = mfc_tag_reserve();DMA tag reservation

tnw_credit_base(lnk, ch, 0);Define base address

tnw_init_rx(&rx, lnk, ch);Initialize RX handler

...

tnw_credit(&rx, rxBuf, msgSize, msgTag);Provide credit

tnw_put(lnk, ch, txBuf, 0, msgSize, dmaTag);Send data

tnw_wait_notify(&rx, msgTag);Wait for notification
...

}

4.4.3 Compiling the program

The tnw library comprising of libraries and include files is installed in a
path defined in the environment variable $QROOT. All pathes should be
defined relative to this path.

To compile the SPU program use the following compiler options:

• Include path: -I$(QROOT)/include

• Linker options: -L$(QROOT)/lib/spu -ltnw_spu

To compile the PPU program use the following compiler options:

• Include path: -I$(QROOT)/include

• Linker options: -L$(QROOT)/lib -lqpace -ltnw

14 QPACE system software: torus

5 Programming Rules

To avoid using the same DMA tags as the library the user must the MFCDMA tags
tag manager functions, e.g. mfc_tag_reserve(), to reserve tags (see [1],
p. 83).

On the PPU the routine for initialising the torus network library musttnw library initialisation
be called before starting the SPU threads.

The receive handler must either be defined as global variable or the func-RX handler
tion tnw_rx_alloc() must be used to instantiate the handler (see 4.1).
Otherwise correct alignment will not be guaranteed.

The send buffer must be allocated 128 Byte aligned.TX buffer

The send buffer must be allocated 128 Byte aligned using the attributeRX buffer
volatile.

The base address for a particular link and virtual channel can only beBase address
updated by the receiving node if there are no pending credits.

The maximum size used in a call of tnw_put() is restricted by the fol-TX size
lowing rules:

• Size must always be ≤ 16 kBytes

• In case the number of sending devices n = 1: To avoid dead-
locks the maximum amount of data in flight per link should be
≤ 16 kBytes.

• If n > 1 sending devices (i.e. SPEs) use the same link (but different
virtual channels) then the total amount of data in flight should not
exceed the following limits:

– ≤ 8 kBytes per virtual channel;

– ≤ 16 kBytes per link.

The remote offset provided in the tnw_put() command must beRemote offset
in the range from 0 to (256 kBytes−message size).1

The maximum credit size is 512 kBytes.Credit size

The number of unconsumed credits is limited to 64.Number of credits

The local offset provided with the credit must be in the range from 0 toLocal offset
65535 · 128 Bytes, i.e. 0x0 ≤ local offset ≤ 0x7fff80.

1 With other words: The remote offset of the last packet within the message is ≤
0x3ff80.

15

Appendix A Torus network initialisation

A.1 Overview

To reset and configure the TNW the following steps are performed:

• PHY reset

• PHY interface configuration

• Link reset and PHY soft reset

• Link off-line removal

Between each of these steps all nodes have to be synchronized.

A.2 PHY reset rst-phy

PHY reset is done when loading torus kernel module. The operations are
implemented in routine torus_phy_reset(u32 lnk) in file tnw.c.

The following operations are performed:

• Hard reset of PHY by writing 0x1111 to TX DCR register 2

• DCM reset by writing 0x111 to TX DCR register 2

• Force link into off-line more by writing 0x11 to TX DCR register 2FIXME: There is a risk
that forcing link into
off-line mode is done
before DCM has locked. After completion of the reset operations the TX DCR register 2 is read

up to TOUT (currently 400) times to check whether DCM has locked.

The application torus_ctl (command “rst-phy”) additionally performs
the following operations:

• Write 0x33 to TX DCR register 2, i.e. links are resetted and put
into off-line mode.

A.3 PHY interface configuration and XGMII FIFO reset cfg-ifp/cfg-ifr

The operations are implemented in routine tnw_config_if() in the tnw

library. The following operations are performed:

• Configure primary or secondary interface using kernel routine

• Set pre-emphasis

• Set swing

• Set receive equalization

• Switch off RX_CLK_[1-3] by asserting RX_CLK_CFG bit in register
0xd001

• XGMII FIFO soft reset (see [3], p. 20):

– Check PLL lock status (LOCKV = 1 in register 0xD0B0)

– Check TxClk presence (TX_CLK_MON = 1 in register 0xD006)

16

– Reset XGMII FIFO:

∗ Set XGMII_FIFO[0..1]_RST in register 0xD00C

∗ Clear XGMII_FIFO[0..1]_RST in register 0xD00C

A.4 Link reset and PHY counter reset rst-lnk

The operations are implemented in routine torus_link_reset() in file
tnw.c. The following operations are performed:

• Read PHY MDIO register 0xD006

• Depending on primary or secondary interface the registers 0xD10B,
0xD10C, 0xD007, 0xC007 or 0xD20B, 0xD20C, 0xD008, 0xC008 are
read

• Links are resetted and fored into off-line mode by writing 0x33 to
TX DCR register 2

• The PHY’s performance monitor is reset by writing 0x8000 to the
register 0xD000

Typically operation is invoked via application torus_ctl (command “rst-
lnk”) which may perform additional checks (e.g. on link status registers).

A.5 Remove off-line mode

The operations are implemented in routine torus_cdm_remove_offline()
in file tnw.c. The following operations are performed:

• Write 0x0 to TX DCR register 2

QPACE system software: torus 17

Appendix B Partitioning examples

Note that not all of the following examples may be support in a configu-
ration with global signals:

#Nodes Partition Blue Partition Other
size cabling root corner

1 (1, 1, 1) any nc-00-00 nc-00-00

2 (1, 1, 2) any nc-00-00 nc-00-01

(1, 2, 1) any nc-00-00 nc-00-08

4 (1, 1, 4) any nc-00-00 nc-00-03

(1, 4, 1) any nc-00-00 nc-00-24

8 (1, 1, 8) any nc-00-00 nc-00-07

(2, 2, 2) r1/r2/r4 nc-00-00 nc-04-09

16 (1, 4, 4) any nc-00-00 nc-00-27

32 (1, 4, 8) any nc-00-00 nc-00-31

64 (2, 4, 8) r1/r2/r4 nc-00-00 nc-04-31

128 (4, 4, 8) r2 nc-00-00 nc-12-31

256 (4, 8, 8) r2 nc-00-00 nc-13-31

512 (4, 16, 8) r2 nc-00-00 nc-15-31

1024 (8, 16, 8) r2 nc-00-00 nc-15-31

18

Appendix C Pending tasks and issues

Description Status

Specify and implement functions to read-out PHY counters 2do

19

Bibliography

[1] IBM, “Software Development Kit for Multicore Acceleration. Pro-
gramming Tutorial,” Version 3.1 release 0.

[2] PMC Sierra, “PM8358 QuadPHY 10GX Data Sheet,” issue No. 7,
November 2005.

[3] PMC Sierra, “PM8358 QuadPHY 10GX Errata,” issue No. 4, Decem-
ber 2006.

20

	Introduction
	Terminology
	Software stack

	Topology
	Definitions/conventions
	Information

	Communication attributes
	Addressing

	Low-level API: tnw
	Reference Guide: User functions
	Initialisation
	Buffer management
	Communication operations
	Memory management
	Topology

	Reference Guide: Data structures in user functions
	tnw_topo_t

	Reference Guide: System/internal functions
	DCR registers interface
	PHY control and monitoring
	Link control and management
	Topology
	Other

	Examples
	PPU program
	SPU program
	Compiling the program

	Programming Rules
	Torus network initialisation
	Overview
	PHY reset rst-phy
	PHY interface configuration and XGMII FIFO reset cfg-ifp/cfg-ifr
	Link reset and PHY counter reset rst-lnk
	Remove off-line mode

	Partitioning examples
	Pending tasks and issues

