
MPI for apeNEXT

02.09.2004

In this document we specify the implementation of a subset of MPI functionality on
apeNEXT and describe the incompatibilities with respect to the MPI-1.1 standard[1].

Contents

1 Overview 5
1.1 Incompatibilities with respect to MPI-1.1 5
1.2 Processes . 5
1.3 Communication modes . 6
1.4 Supported data types . 7
1.5 Send/receive operations . 7

2 Implemented functions 9
2.1 Standard MPI functions . 9

2.1.1 MPI Init . 9
2.1.2 MPI Initialized . 9
2.1.3 MPI Finalize . 10
2.1.4 MPI Abort . 10
2.1.5 MPI Comm size . 10
2.1.6 MPI Comm rank . 10
2.1.7 MPI Get processor name . 11
2.1.8 MPI Barrier . 11
2.1.9 MPI Wtime . 11
2.1.10 MPI BCast . 12
2.1.11 MPI Allreduce . 12
2.1.12 MPI Send . 13
2.1.13 MPI BSend . 13
2.1.14 MPI Recv . 14
2.1.15 MPI APE Send . 14
2.1.16 MPI APE Recv . 14
2.1.17 MPI Sendrecv . 15
2.1.18 MPI Sendrecv replace . 15

2.2 Non standard MPI functions . 16
2.2.1 MPI GetNodeAbsX . 16
2.2.2 MPI GetNodeAbsY . 16
2.2.3 MPI GetNodeAbsZ . 16
2.2.4 MPI GetNextNodeX . 16
2.2.5 MPI GetPrevNodeX . 16
2.2.6 MPI GetNextNodeY . 16
2.2.7 MPI GetPrevNodeY . 17

3

2.2.8 MPI GetNextNodeZ . 17
2.2.9 MPI GetPrevNodeZ . 17

2.3 Library internal functions . 17
2.3.1 MPI Topology . 17
2.3.2 MPI Neighbours . 17

3 Appendix 18
3.1 MPI communication modes . 18

4

1 Overview

We generally follow the MPI-1.1 Standard. But, since the MPI interface assumes a very
general communication models, it is very hard to support the full MPI functionality on a
special architecture like apeNEXT. Some functions would become prohibitively inefficient.

1.1 Incompatibilities with respect to MPI-1.1

This implementation of MPI for apeNEXT does not have the goal to support the full
MPI standard. This would be hard to achieve as MPI assumes a MIMD programming
model.1

• Only communicator MPI COMM WORLD is supported.

• No support for request handles is implemented. Functions providing pointers to
request handles will not change this pointer, except MPI Sendrecv().

• The following data types are not supported:

– MPI CHAR

– MPI UNSIGNED CHAR

– MPI BYTE

– MPI PACKED

• Not implemented/supported functions:

– MPI Buffer attach, MPI Buffer detach2, MPI Get count, MPI Probe, MPI RSend,
MPI SSend, MPI Test, MPI Testany, MPI Testall, MPI Testsome, MPI Wait,
MPI Waitany, MPI Waitall, MPI Waitsome, MPI Probe, MPI IProbe, MPI Cancel,
MPI Test cancelled

– Functions related to persistent send requests

1.2 Processes

Since on APE machines exactly one process is executed at a time on each node, there is
a one-to-one correspondence between nodes and processes, and we user the two notions
as synonymous in the following.

1[1], p. 12.
2We plan to support MPI Buffer attach and MPI Buffer detach in future.

5

1.3 Communication modes

The following rules impose restrictions to the supported communication modes:

1. Each node can communicate only across up to three orthogonal links to all nodes
on a cube, i.e. connecting nodes at relative distance (∆x, ∆y, ∆z) with |∆i| ≤ 1.

2. Communication between two nodes have to be /em homogeneous if the distance
between both nodes is > 1, this means that all nodes my make communication at
the same time in the same (relevant) direction.

3. Receive operations are always blocking. No mechanism for posting receive opera-
tions and no support for request handles is foreseen.

4. Send operations are always non-blocking.

5. Communications can not be canceled.

MPI provide four communicational modes, but we support only buffered mode:

• Standard mode is mapped to buffered mode.

• Buffered mode:

– Send function triggers copy of send data into send buffer in memory.

– Receive operation triggers network transfer.

– Buffer released after (blocking) receive operation completed

– Message size limited by memory space.

– Only homogeneous communication allowed.

– Only 1-, 2- and 3-Step communications are allowed.

• Synchronous mode is not supported since there is no mechanism to post receive
operations foreseen.

• Ready mode is not supported since there is no mechanism foreseen to post receive
operations3.

We also support APE (hardware oriented) send mode:

• Send function triggers send operation.

• Send data is “buffered” in TXFIFO, i.e. message size is limited to MPI FIFO SIZE.

• Receive function triggers receive operation.

• Inhomogeneous communication are allowed.

• Sender and receiver must be directly connected (1-link communication).
3Although hardware would allow to “post” a single receive operation up to MPI FIFO SIZE

6

1.4 Supported data types

apeNEXT is a 64-bit architecture and all data types have the same length. We don’t
support MPI CHAR. All MPI data types are mapped to four groups of C-types implemented
on apeNEXT (see Table 1.1). Most functions do not care about the data type, except
MPI Allreduce().

MPI name C equivalent Size on APE

MPI INT integer 2 ∗ 64 bit
MPI LONG long mirrored
MPI SHORT short int
MPI BYTE
MPI LOGICAL
MPI UNSIGNED unsigned integer 2 ∗ 64 bit
MPI UNSIGNED SHORT unsigned short int mirrored
MPI UNSIGNED LONG unsigned long
MPI DOUBLE double 64 bit +
MPI FLOAT float 64 bit zero
MPI LONG DOUBLE long double
MPI DOUBLE PRECISION
MPI COMPLEX — 2 ∗ 64 bit
MPI DOUBLE COMPLEX
MPI CHAR (*) char —
MPI UNSIGNED CHAR (*) unsigned char
MPI CHARACTER (*)
MPI PACKED (*) — —

Table 1.1: MPI data types. (*) – means that this feature is not supported on APE

The internal FIFO of the apeNEXT network hardware has space for a total of
MPI FIFO SIZE= 64 words, with a wordlength of 128 bits. Since, each of the supported
data typs occupies one word of 128 bits, the limitation of MPI FIFO SIZE= 64 elements
is independent of the data type.

1.5 Send/receive operations

To make send/receive operation we provide to the user several functions:

• Send-receive operation:

MPI Sendrecv(): Basic function to perform homogeneous communications. We
strongly recommend to use this function for data transmission. See descrip-
tion (2.1.17) for details.

7

MPI Sendrecv replace(): Macro to MPI Sendrecv().

• Send and receive separately:

MPI Send(): Macro for MPI BSend().

MPI BSend(): Send in buffered mode. See description (2.1.13) for details.

MPI Recv(): Receive in buffered mode. See description (2.1.14) for details.

• APE specific functions:

MPI APE Send(): Allows to send data in non-homogeneous mode between nearest
neighbors. See description (2.1.15) for details.

MPI APE Send(): See description (2.1.16) for details.

Function MPI BSend()4 allows user to send huge amounts of data and allows routing
across up to three orthogonal links to all nodes on a 3 ∗ 3 ∗ 3 cube, i.e. to any node at
relative distance (∆x, ∆y, ∆z) with |∆i| ≤ 1. The communication must be homoge-
neous. The user must specify a unique tag (assertion that tag not equal to MPI ANY TAG).
This operations stores the data to the local memory, until MPI Recv() is called with the
corresponding tag.

When the user calls MPI Recv(), the tag argument is checked. If tag equal to
MPI ANY TAG, function finds first not empty buffer, otherwise, the function finds the
buffer with the same tag. If such buffer not found, function return MPI ERROR TAG. Then
the function starts a send-receive operation from the buffer in the local memory to the
destination.

4The same for MPI Send().

8

2 Implemented functions

2.1 Standard MPI functions

Most functions have an assertion that the communicator equals to MPI COMM WORLD.

2.1.1 MPI Init

void MPI Init(int *argc, char *argv[])
All MPI programs must contain a call to MPI Init(); before any other MPI routine

is called. It must be called at most once; subsequent calls are erroneous. The version
for ANSI C accepts the argc and argv that are provided by the arguments to the main
function:

Internals:

• checks topology,

• creates map of neighbors,

• marks local buffers as empty,

• initialize MPI mechanism MPI Initialized().

APE-Limitations: MPI Init() currently ignores the arguments.

2.1.2 MPI Initialized

int MPI Initialized(int *flag)
This routine may be used to determine whether MPI Init() has been called. It is

the only routine that may be called before MPI Init() is called.

Internals: Checks global variable.

APE-Limitations: None.

9

2.1.3 MPI Finalize

void MPI Finalize(void)
This routines cleans up all MPI states. Once this routine is called, no MPI routine

(even MPI Init()) may be called. The user must ensure that all pending communications
involving a given process complete before that process calls MPI Finalize.

Internals: Doing nothing.

APE-Limitations: None.

2.1.4 MPI Abort

void MPI Abort(MPI Comm comm, int errno) This routine makes a ’best attempt’ to
abort all tasks in the group of comm. This function does not require that the invoking
environment takes any action with the error code.

Internals: Output errno and exit. As it is allowed by the MPI standardm function
ignores comm parameter.

APE-Limitations: None.

2.1.5 MPI Comm size

void MPI Comm size(MPI Comm comm, int *size)
Get the number of processes in the group of comm.

Internals: Returns MPI block size, calculated by the internal library function MPI Topology(),
called from MPI Init().

APE-Limitations: Assertion that comm is MPI COMM WORLD.

2.1.6 MPI Comm rank

void MPI Comm rank(MPI Comm comm, int *size)
Indicates the rank of the process that calls it in the range 0, 1, 2, ..., (size-1),

where size is the return value of MPI Comm size().

Internals: Returns the value of the OS-initialized variable node abs id.

APE-Limitations: Assertion that comm is MPI COMM WORLD.

10

2.1.7 MPI Get processor name

void MPI Get processor name(char *name, int *len)
This routine returns the name of the processor on which it was called. The name is a

character string for maximum flexibility. It’s value must allow to identify a specific piece
of hardware; possible values include “processor 9 in rack 4 of mpp.cs.org” and
“231” (where 231 is the actual processor number in the running homogeneous system).
The argument name must represent storage that is at least MPI MAX PROCESSOR NAME
characters long. MPI Get processor name may write up to this many characters into
name.

Internals: Returns “node XXX”, where “XXX” ≡ node abs id.

APE-Limitations: From “node XXX” it’s not possible to identify the system of the ma-
chine (“slice”) on which program is executed.

2.1.8 MPI Barrier

void MPI Barrier(MPI Comm comm)
Blocks the caller until all group members have called it. The call returns on all

processes after all group members have entered the call.

Internals: The global tree of the apeNEXT root-loginc network is used to implement a
barrier by executing instruction if(all()).

APE-Limitations: Assertion that comm is MPI COMM WORLD.

2.1.9 MPI Wtime

double MPI Wtime()
Returns a floating-point number of seconds, representing elapsed wall-clock time

since some time in the past. The ’time in the past’ is guaranteed not to change during
the life of the process. The user is responsible for converting large numbers of seconds
to other units if they are preferred.

Internals: Access the configuration register, storing number of run-mode clock cycles,
multiply this value by clock frequency.

APE-Limitations: Does not count the time for which the machine is in 12C-mode
(e.g. during system service via OS1).

11

2.1.10 MPI BCast

int MPI Bcast(const void* in, const int sendcount, const MPI Datatype dtype,
int root, MPI Comm comm)

Broadcasts a message from the process with rank root to all processes of the group,
including the root processor itself. It is called by all members of group using the same
arguments for comm, root. On return, the contents of root’s communication buffer has
been copied to all processes.

Internals: Send the data from root node to all other nodes by repeating 1-step com-
munications along the X, Y and Z directions.

APE-Limitations: Assertion that comm is MPI COMM WORLD.

2.1.11 MPI Allreduce

int MPI Allreduce(const void* sendbuf, void* recvbuf, const int count,
const MPI Datatype dtype, const MPI Op op, MPI Comm comm)

Combines the elements provided in the input buffer of each process in the group, using
the operation op, and returns the combined value in the output buffer on all processors.
The input buffer is defined by the arguments sendbuf, count and dtype; the output
buffer is defined by the arguments recvbuf, count and dtype; (count and dtype specify
the number of elements and their size for both buffers). The routine is called by all group
members using the same arguments for count, dtype, op and comm. Thus, all processes
provide input buffers and output buffers of the same length, with elements of the same
type. Each process can provide one element, or a sequence of elements, in which case the
combine operation is executed element-wise on each entry of the sequence. For example,
if the operation is MPI MAX and the send buffer contains two elements that are floating
point numbers (count = 2 and dtype = MPI FLOAT), then recvbuf(1) = global max
(sendbuf(1)) and recvbuf(2) = global max (sendbuf(2)).

Internals: First, all nodes exchange data, making operation Op on them. Then, if
operation is MPI SUM or MPI PROD and operands contains floating point numbers, default
node (0, 0, 0) broadcasts result to all nodes, to ensure that all nodes have the same result
of operation (because it may depend on the operand order). MPI MIN and MPI MAX is not
supported for MPI COMPLEX data, as it described in the MPI standard.

APE-Limitations:

• Assertion that group is MPI COMM WORLD.

• Function supports only MPI MIN, MPI MAX, MPI SUM and MPI PROD operations.

12

2.1.12 MPI Send

MPI Send(void *data, int count, MPI Datatype dtype, int dest,
int tag, MPI Comm comm) Send some data though the network.

Internals: Macro to MPI BSend()

APE-Limitations: See MPI BSend().

2.1.13 MPI BSend

int MPI BSend(void *data, int count, MPI Datatype dtype,
int dest, int tag, MPI Comm comm)

A buffered mode send operation can be started whether or not a matching receive
has been posted. It may complete before a matching receive is posted. However, unlike
the standard send, this operation is local, and its completion does not depend on the
occurrence of a matching receive. Thus, if a send is executed and no matching receive
is posted, then MPI must buffer the outgoing message, so as to allow the send call to
complete. An error will occur if there is insufficient buffer space.

Internals: Function copy user data into MPI LOCAL BUFFER and store it here, until
MPI Recv() function will be called with the corresponding tag. If you will try to send
several data will the same tag nobody check, but if you will start to MPI Recv() you
may get an exception, thanks to that fact that data will be mixture and you will try to
receive another one.

APE-Limitations:

• User must specify unique tag. MPI ANY TAG is prohibited.

• Operation must be homogeneous. So, it’s possible to have 2- and 3-Step commu-
nications in different dimensions.

• Now operation using static buffer, except static ATTACH/DETACH mechanism.
So, only MPI LOCAL BUFFERS COUNT buffers available. Maximum size of massage
MPI LOCAL BUFFERS LEN. If there are no free space in buffer, function returns
MPI ERR TAG.

• Function ignores argument dest. Since only the corresponding receive operation
will trigger the communication.

• Assertion that group is MPI COMM WORLD.

13

2.1.14 MPI Recv

int MPI Recv(void *recvbuf, int count, MPI Datatype dtype,
int source, int tag, MPI Comm comm)

The receive buffer (recvbuf) must provide storage for count consecutive elements
of the type specified by dtype, starting at address recvbuf. The length of the received
message must be less than or equal to the length of the receive buffer. An overflow error
occurs if all incoming data does not fit, without truncation, into the receive buffer.

Internals: Buffered receive. The function initiates the communication after checking
the parameter tag: if it is equal to MPI ANY TAG function gets first message from buffer
it founds. Otherwise, the function tries to find the first message in the buffer with the
same tag.

APE-Limitations:

• Assertion that comm is MPI COMM WORLD.

• Only 1-, 2- and 3-step communications are possible.

• Message must be smaller then MPI LOCAL BUFFER LEN.

• Operations must be homogeneous, therefore it’s better to use MPI Sendrecv().

2.1.15 MPI APE Send

int MPI APE Send(void *data, int count, int dest)
Start immediately send operation to destination node. Function allows user to send

data in non-homogeneous mode between two nodes that are directly connected (i.e. near-
est neighbors).

Internals: Issues only one MTQ/RTQ (tx only). Function checks that dest is nearest
neighbor and performs prefetch(). The function has less arguments than MPI Send())
because they are irrelevant for MPI APE Send().

APE-Limitations:

• Only 1-step communications.

• Message length must be Size ≤ MPI FIFO SIZE elements.

2.1.16 MPI APE Recv

int MPI APE Recv(void *recvbuf, int count, int source)
Starts immediately receive operation from given source node.

14

Internals: Generates RTQ (rx only) and QTR instructions. The function checks if
dest is nearest neighbor. The function has less arguments than MPI Send()) because
they are irrelevant for MPI APE Send().

APE-Limitations:

• Only 1-Step communications are possible.

• Message length must be ≤ MPI FIFO SIZE elements.

2.1.17 MPI Sendrecv

int MPI Sendrecv(void *sendbuf, int sendcount, MPI Datatype send type, int
dest, int sendtag, void *recvbuf, int recvcount, MPI Datatype recvtype,
int source, MPI Datatype recvtag, MPI Comm comm, MPI Status *status)

The send-receive operations combine in one call the sending of a message to one
destination and the receiving of another message, from another process. The two (source
and destination) are possibly the same. A send-receive operation is very useful for
executing a shift operation across a chain of processes.

Internals: Function checks that distance from source to current node and from current
node to dest node are the same. Then starts the communication. Warning: This func-
tion does not check that the distance is the same on all nodes, and that communication
is actually homogeneous.

APE-Limitations:

• Assertion that group is MPI COMM WORLD.

• Only homogeneous operations allowed.

• 1-, 2- and 3- step communications are allowed.

• The distance from source to current node and from current to dest must be the
same on all nodes.

• Functions doesn’t take care about tag and status arguments.

2.1.18 MPI Sendrecv replace

int MPI Sendrecv replace(void *buf, int count, MPI Datatype datatype, int dest,
int sendtag, int source, int recvtag, MPI Comm comm, MPI Status *status)

Execute a blocking send and receive. The same buffer is used both for the send
and for the receive, so that the message sent is replaced by the message received. The
semantics of a send-receive operation is what would be obtained if the caller forked two
concurrent threads, one to execute the send, and one to execute the receive, followed by
a join of these two threads.

15

Internals: Macro to MPI Sendrecv().

APE-Limitations: The same like MPI Sendrecv().

2.2 Non standard MPI functions

We also implement several non-standard function to allow users to write optimal send-
receive requests without caring about hardware details.

All this functions have no limitations and are based on global variables like mpi block size x
and mpi block number x, generated by the MPI Topology() function.

2.2.1 MPI GetNodeAbsX

int MPI GetNodeAbsX(int node id)
Returns the X-coordinate of the node with rank node id.

2.2.2 MPI GetNodeAbsY

int MPI GetNodeAbsY(int node id)
Returns the Y -coordinate of the node with rank node id.

2.2.3 MPI GetNodeAbsZ

int MPI GetNodeAbsZ(int node id)
Returns the Z-coordinate of the node with rank node id.

2.2.4 MPI GetNextNodeX

int MPI GetNextNodeX(int node id)
Returns the rank of the neighbor in direction X+ of the node with rank node id.

For example, if you have a machine with topology 4x4x4 command
int MPI GetNextNodeX(0) will return 1
int MPI GetNextNodeX(1) will return 2
int MPI GetNextNodeX(2) will return 3
int MPI GetNextNodeX(3) will return 0

2.2.5 MPI GetPrevNodeX

int MPI GetPrevNodeX(int node id)
Returns the rank of the neighbor in direction X− of the node with rank node id.

2.2.6 MPI GetNextNodeY

int MPI GetNextNodeY(int node id)
Returns the rank of the neighbor in direction X− of the node with rank node id.

16

2.2.7 MPI GetPrevNodeY

int MPI GetPrevNodeY(int node id)
Returns the rank of the neighbor in direction Y− of the node with rank node id.

2.2.8 MPI GetNextNodeZ

int MPI GetNextNodeZ(int node id)
Returns the rank of the neighbor in direction Z+ of the node with rank node id.

2.2.9 MPI GetPrevNodeZ

int MPI GetPrevNodeZ(int node id)
Returns the rank of the neighbor in direction Z− of the node with rank node id.

2.3 Library internal functions

A library contains some internal functions that run are called automatically from MPI Init().
The user is not supposed to execute them. But, we describe them here, because they
are mentioned in the description of some other functions.

2.3.1 MPI Topology

Check machine topology (divided into block or not) and generate global variables, used
by other functions.

2.3.2 MPI Neighbours

Generate map[] of neighbors for each node. It is used to check if it is possible to perform
send-receive operations or not, and to determine the actual (relative) distances, which
are used by the communication hardware.

17

3 Appendix

3.1 MPI communication modes

The MPI-1.1 standard foresees the following communication modes:

• Standard communication mode:

The MPI Standard specify that the standard communication modde must be im-
plemented either as buffered or ready mode (i.e. the choice between the two is
implementation dependent). Therefore the standard send can be started whether
or not a matching receive has been posted. It may complete before a matching
receive is posted. Successful completion of a send may depend on the occurrence
of a matching receive.

• Buffered mode:

Send can be started whether or not a matching receive has been posted. It may
complete before a matching receive is posted. Completion does not depend on
matching receive.

• Synchronous mode:

Send can be started whether or not a matching receive was posted. However, he
send will complete successfully only if a matching receive is posted, and the receive
operation has started to receive the message sent by the synchronous send.

• Ready communication mode:

Send may be started only if the matching receive is already posted. Otherwise the
outcome is undefined.

18

Bibliography

[1] Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard,”
1995.

[2] APE Zeuthen Web-page, www-zeuthen.desy.de/ape

[3] D. Sokolov, “Implementation MPI for apeNEXT”, Summer Student Report, DESY
Zeuthen 2004

19

