
Implementation of MPI for apeNEXT

Dmitry Sokolov
Moscow State University

sokolov@forecsys.ru

Our aim was to provide a high-level message passing protocol to make migration to

APE more easy. We generally follow the MPI-1.1 Standard. However, since the MPI

interface assumes a very general communication model, it is very hard to support the

full MPI functionality on a special architecture like apeNEXT. Some functions would

become prohibitively inefficient. So, we implemented a set of the major functions to

allow users a more easy use of the power of apeNEXT using the MPI mechanism.

1 INTRODUCTION

The APE (Array Processor Experiment) project
was started in the mid eighties by the Istituto
Nazionale di Fisica Nucleare (INFN) with the
aim of developing massively parallel comput-
ers optimized for LQCD (Lattice QCD) simula-
tions in theoretical particle physics. Within the
framework of an European collaboration with
DESY and the University of Paris Sud, currently
a new generation of LQCD machines, apeNEXT,
is being developed.

The Message Passing Interface (MPI), is a
widely used standard for writing parallel pro-
grams following the message-passing communi-
cation model. The interface should establish
a practical, portable, and flexible standard for
message passing.

To make code migration from other super-
computers to APE easier we implemented a sub-
set of the MPI library for apeNEXT. Our aim was
not to implement the full MPI-1.1 standard, but
rather to provide some key-functionality, to al-
low the user to run typical numerical code using
MPI on APE.

The user should, however, be aware that due
to the generic purpose of the MPI interface, it
is not possible to make full use of the special-
ized hardware features of apeNEXT. Using MPI

on APE will therefore typically not be the most
efficient way of parallel programming.

2 APE PROJECT

APE is one of several projects in the theoretical
physics community that have developed mas-

sively parallel, high-performance computer ar-
chitectures. The driving force why physicists de-
velop and build computers by themselves is the
success of numerical simulations in understand-
ing the interactions of elementary particles, in
particular their strong interactions described by
quantum chromodynamics (QCD) (see [2] for
details). The formulation of QCD which can be
simulated on computers is called Lattice QCD
(LQCD).

These simulations require a lot of computer
power which can only be provided by massively
parallel computers. To keep costs low it is (still)
useful to custom design special purpose comput-
ers like apeNEXT.

2.1 The Family of APE Machines

The evolution over more than one decade of APE

systems is briefly recollected in Table 1.
The first generation of APE computers dates

to the mid eighties. APE100, the second gen-
eration of APE supercomputers, had been the
leading workhorse of the European lattice com-
munity since the middle of the 1990s.

Commissioning of APEmille, the third gen-
eration of APE systems, started in the year
2000. These machines make currently 2 TFlops
of computing power available to the LGT com-
munity.

APEmille machines are installed at several
sites all over Europe, as detailed in table 2.
They provide a very stable and reliable comput-
ing environment, with typical up-times of the
order of 85 %.

In order to keep up with future and growing

1

2 2 APE PROJECT

APE 1 APE100 APEmille apeNEXT

1988 1993 1999 2003

Architecture SIMD SIMD SIMD SPMD
nodes 16 2048 2048 4096
Topology flexible 1D rigid 3D flexible 3D flexible 3D
Memory per CPU 256 MB total 4-64 MB 32 MB 256-1024 MB
registers (width) 64 (32 bit) 128 (32 bit) 512 (32 bit) 512 (64 bit)
clock speed 8 MHz 25 MHz 66 MHz 200 MHz
Total Computing 1.5 GFlops 250 GFlops 2 TFlops 8-20 TFlops
Power of all

Tab. 1: Key parameter comparison of the APEfamily of supercomputer.

requirements, the development of a new gen-
eration of a multi-TFlops computer for LGT,
apeNEXT, is in progress.

2.2 apeNEXT Processor and Global
Design

For apeNEXT all processor functionalities, in-
cluding the network devices, are integrated into
one single custom chip running at a clock fre-
quency about 200 MHz. Unlike in the former
APE machines, the nodes run asynchronously.

This gives rise for two new key features of
apeNEXT. First, apeNEXT follows the single
program multiple data (SPMD) programming
model (as opposed to SIMD). Each processing
node is a fully independent processor, with a
full-fledged flow-control unit and, of course, a
number-crunching unit. The node has access to
its own memory bank, where both program and
data are stored. It executes its own copy of the
program at its own pace. Nodes need to be syn-
chronized only when a data-exchange operation
is performed. This architecture may be labeled
as a distributed-memory parallel computer, in
which nodes exchange data through some sort

Bielefeld 130 GFlops (2 crates)
Zeuthen 520 GFlops (8 crates)
Milan 130 GFlops (2 crates)
Bari 65 GFlops (1 crates)
Trento 65 GFlops (1 crates)
Pisa 325 GFlops (5 crates)
Rome 1 520 GFlops (8 crates)
Rome 2 130 GFlops (2 crates)
Orsay 16 GFlops (1/4 crates)
Swansea 65 GFlops (1 crates)

Tab. 2: The APEmille installations.

Linux PCLinux PC

I2C

Ethernet

LV
D

S

7th link
interface interface

I2C 7th link
interface

Fig. 1: A possible apeNEXT configuration with
4 boards, 2 external LVDS-links for I/O, and a
chained I2C-link for slow-control.

of “message-passing” scheme.

The latency associated to a “message” is ex-
tremely short, of the order of 2 to 3 times the
latency associated to an access to local memory.

A second important architectural enhance-
ment lays on the possibility of routing all read
memory accesses (to local or remote nodes)
through a receiving queue, which can be later
accessed by the processor with zero latency.

The complete processing element is con-
tained in just one custom-designed integrated
circuit, connected to a memory bank of 256–
1024 MBytes with Double Data Rate (DDR)
Dynamic RAM chips.

The block diagram of the processor chip is
shown in Fig. 2. It is a 64-bit architecture, op-
timized for floating point performance.

We would like to highlight some selected de-
tails of the processor shown in Fig. 2:

• A large register file of 256 registers each
containing a pair of 64 bit words. All
operands for the arithmetic unit arrive from

2.3 apeNEXT Network 3

TX

LU INT LUT FPU

Register File
512 x 64 bit

Program and Data Memory (DDR−SDRAM 256 M ... 1 G)

Microcode

AGU

Disp.

Switch
Queues RX

Instr.
Buffer

Decompr.

DMA

PC MC

host
+x
−x
+y
−y

−z
+z

host
+x
−x
+y
−y

−z
+z

0 1 2

4

5

PMA

64

128

128

64

3

local

64

128

128

128128 128 128

Fig. 2: Schematics of the apeNEXT processor.

the register file and all results are written
back here.

• An arithmetic unit which performs float-
ing point as well as integer operations. All
floating-point data is represented in the 64-
bit double-precision format of the IEEE
standard.

• An address-generation unit (AGU) which
computes addresses for memory access in-
dependently and concurrently with the
main arithmetic unit.

• A memory controller (MC) supporting a
memory bank of 256–1024 MBytes based
on standard DDR-SDRAM. The memory
is used to store both data and program in-
structions.

• A flow-control unit that executes programs
specified as a sequence of compiler prepared
microcode words, using the VLIW control
style.

• A network interface which contains seven
LVDS link interfaces. Each link is bi-
directional allowing send and receive oper-
ations to run concurrently.

• A slow serial interface based on the I2C
standard, used for system initialization, de-
bugging and exception handling.

2.3 apeNEXT Network

We have a three-dimensional torus of processors
(see Fig. 3). Although all nodes are connected
to their nearest neighbors only, the hardware al-
lows routing across up to three orthogonal links

to all nodes on a cube, i.e. connecting nodes at
relative distance (∆x, ∆y, ∆z) with |∆i| ≤ 1.

Typically we use the SIMD operation model,
therefore the communications are homogeneous,
i.e., each node (x, y, z) communicate with the
corresponded (x + ∆x, y + ∆y, z + ∆z) with
|∆i| ≤ 1.

Since apeNEXT also allows non-SIMD opera-
tion (due to the possible asynchronous operation
of each node), we can also use non-homogeneous
communications. Non-homogeneous communi-
cations are restricted to the rule, that from any
node with coordinates (x, y, z) one can send
data only to the node with coordinates (x+∆x,
y+∆y, z+∆z) with (|∆x|+|∆y|+|∆z|) ≤ 1. For
instance, we can send data only from the node
with coordinates (1, 1, 1) to the node (1, 1, 2).
The first one must sends this data into Z+ di-
rection and the second node reads it from Z− di-
rection. Note, that the receiver on node (1, 1, 2)
needs to be activated explicitly by instructions
executed on this node.

Fig. 3: 3D-Torus. Each node connected with 6
neighbors. Some communicational links not showed.

For homogeneous communications, the hard-
ware supports direct data transfer along 2 (or 3)
links, e.g. through the path shown in Fig. 4.
The directions of these 2 (or 3) links have to be
orthogonal. One possible communication could
be from each node (x, y, z) to (x, y + 1, z + 1).

In practice, these restrictions are not a prob-
lem, because in LQCD equations the nodes of-
ten need to communicate only with their nearest
neighbors.

4 2 APE PROJECT

Mem

Fifo

Tx

Rx

Fifo Queue RFRx Fifo
link

Tx

link

Fig. 4: Two nodes can transmit data using homoge-
neous communications.

2.4 Data types on apeNEXT

Since all data types on apeNEXT have a size of
either 64 or 128 bits, we can restrict ourself to
support the following data types:

• integer

• unsigned integer

• double

• complex

Most MPI data types can be mapped to these
types according to Table. 3. Our implementa-
tion does not support data types MPI PACKED

and the family of MPI CHAR, because they are
not relevant for LQCD simulation codes.

2.5 “Hello world!” on apeNEXT

It’s time to write a “Hello world!” program
on APE. Our program will be executed on a
supercomputer optimized for Lattice QCD, so,
we will also create a small array, fill it with
some digits and transmit them in X− direc-
tion. The program does not require a specific
topology, so it can run on any APE configura-
tion. The standard printf() command would
output data only from the default node, there-
fore, we will use the apeNEXT specific function
mputi() for output. As arguments mputi()

takes a slice of nodes which should write
their data. The command mputi(0, 0, 0, i)

will print the integer value i from node
(0, 0, 0), command mputi(0, 0, 1, i) will

MPI name C equivalent

MPI INT integer,
MPI LONG long,
MPI SHORT short int
MPI BYTE

MPI LOGICAL

MPI UNSIGNED unsigned integer,
MPI UNSIGNED SHORT unsigned short int,
MPI UNSIGNED LONG unsigned long,
MPI DOUBLE double,
MPI FLOAT float,
MPI LONG DOUBLE long double
MPI DOUBLE PRECISION

MPI COMPLEX

MPI DOUBLE COMPLEX

MPI CHAR (*) char
MPI UNSIGNED CHAR (*) unsigned char
MPI CHARACTER (*)
MPI PACKED (*)

Tab. 3: MPI data types. (*) – means that this fea-
ture is not supported by MPI on APE

do the same from node (0, 0, 1), com-
mand mputi(0, 0, 0, 1, 1, 0, i) will gen-
erate output from nodes (0, 0, 0), (0, 1, 0),
(1, 0, 0) and (1, 1, 0).

In our program we will use global vari-
ables defined by the operating system, like
machine size x which stores the number of
nodes in X dimension and node abs id, which
contains a unique node id.

// Example 1: Hello world!

#include <stdio.h>

#include <queue.h>

#include <sysvars.h>

#define MAX 4 // length of array

int main()

{

int i;

double a[MAX];

// This wil be produced only by

// default node

printf("Hello world!\n");

// Initialization of array

for (i=0; i<MAX; i++)

a[i] = node_abs_id + i;

// Sending array in X+

for (i=0; i<MAX; i++) {

prefetch(a[i+X_PLUS]);

fetch(a[i]);

5

}

// Output of array

for (i=0; i<MAX; i++) {

printf("a[\%d]\n", i);

mputd(0, 0, 0,

machine_size_x - 1,

machine_size_y - 1,

machine_size_z - 1,

a[i]);

}

return 0;

}

In this code we declare two variables (array
of double a[] and integer i). On each node of
apeNEXT an instantiation of these variables will
be created in the local memory, but of course on
each node these variables can hold a different
value. When elements of an array are accessed
with the magic offset X PLUS in the index, the
CPU of each node recognizes that it must take
the value of a[] not from its local memory, but
from the memory of the corresponding remote
node. The memory read access can be split into
two parts by using the macros prefetch() and
fetch():

prefetch(a[i+X PLUS]): fetches the value of
a[i] from the local memory and sends it to
X− and it also starts receiving data from
the remote node in X+ direction. This
data is automatically stored in a receive
queue.

fetch(a[i]): loads the data from the receive
queue into the register file if the receive op-
eration is completed, otherwise the proces-
sor has to wait.

At software level no further instructions are
needed, the network operation is automatically
controlled and executed by the hardware.

2.6 Software and Application
Benchmarks

For apeNEXT both a TAO and a C compiler is
provided. The latter is based on the freely avail-
able lcc compiler and supports most of the ANSI
89 standard with a few language extensions re-
quired for a parallel machine [3]. Both compilers
generate a high-level assembly. An assembler
pre-processor (mpp) is used to translated this
into a low-level assembly. For machine specific
optimizations at this assembly level, e.g. address
arithmetics and register move operations, the

software package sofan is under development.
Finally, the microcode generator (shaker) op-
timizes instruction scheduling, which for APE

machines is completely done in software (see
Fig. 5).

Zz parser

asm generator
kernel (vraps)

macro expansion

cache utilities

muladd fusion

AGU−optimisation

move removal
dead code removal

label analysis

frontend
(trees, symb.)
backend

register allocation
label resolution

scheduling

compression

functional
simulation

rtc

sofan

mpp

nlcc

linkersf

shaker

*.zzt *.c

*.masm

*.masm

*.nex

*.nex

*.no

.sasm.sasm

Fig. 5: An overview on the compilation procedure.

In QCD simulations most of the time is spent
applying the discretized Dirac operator, i.e. a
matrix-vector multiplication (see. [2]). This
operation involves remote communications and
therefore depends on the number of processors
used. The maximum number of processors is
limited by the size of the problem, i.e. the lattice
volume. Considering the worst case where the
problem is distributed over the maximum num-
ber of processors, a sustained performance of
56% has been found. This eventually indicates
an excellent scaling behavior of the apeNEXT

architecture.

3 MPI INTERFACE

3.1 What is MPI?

MPI was an effort to produce a message-passing
interface standard across the whole parallel pro-
cessing community. Sixty people representing
forty different organizations – users and vendors

6 4 IMPLEMENTATION DETAILS

of parallel systems from both the US and Europe
– collectively formed the ”MPI Forum”. After
two years of discussion they released a document
specifying a standard Message Passing Interface
(MPI).

MPI provides source-code portability of
message-passing programs written on C or For-
tran across a variety of architectures.

MPI name Function

MPI SUM Sum
MPI PROD Production
MPI MIN Minimum
MPI MAX Maximin
MPI LAND(*) Logical AND
MPI BAND(*) Bitwise AND
MPI LOR (*) Logical OR
MPI BXOR(*) Bitwise OR
MPI LXOR(*) Logical XOR
MPI BXOR(*) Bitwise XOR
MPI MAXLOC(*) Max. & location
MPI MINLOC(*) Min. & location

Tab. 4: MPI operations used by MPI Allreduce().
(*) – is not supported.

3.2 MPI Communication modes

MPI comprises a library. An MPI process con-
sists of a C or Fortran 77 program which com-
municates with other MPI processes by calling
MPI routines.

MPI supports four communication modes:

Standard mode: Must be mapped to buffer or
ready.

Buffered mode: Send operations store data to a
memory buffer and communication will be
finished once the receive function has com-
pleted.

Synchronous mode: Sender waits for posting
from receiver and exits from subroutine
only after the receiver has received the full
message.

Ready mode: Sender immediately starts to
transfer data, but the operation is guaran-
teed to complete correctly only if the re-
ceiver is ready to receive data, otherwise
the result of the operation is undefined.

Each message in MPI must have a tag that
allows the receiver to take any message with a
matching tag.

4 IMPLEMENTATION DETAILS

4.1 APE-Limitations for MPI

As the MPI interface assumes a very general
communication models, it is very hard to sup-
port the full MPI functionality on a special ar-
chitecture like apeNEXT. Some functions would
become prohibitively inefficient. We therefore
decided to introduce the following restrictions:

1. MPI allows users to divide the whole ma-
chine into processing groups, called com-

munication groups identified by a commu-

nicator. Users can execute an operation on
all nodes of one communication group. We
prohibit this – only MPI COMM WORLD com-
municator can be used, that means that
always the whole machine partition takes
part in group operations.

2. apeNEXT doesn’t have any system services
that run independently from the main pro-
gram and could, e.g., interrupt execution
of user programs. Therefore we don’t im-
plement error handlers. Users can’t cancel
network operations.

3. Since on apeNEXT data transfer is han-
dled by the network hardware in a com-
pletely independent and automatic way
(after a communication request has been
issued), all send operation are always
non blocking. Special non-blocking op-

erations like MPI ISend(), MPI IBsend(),
MPI ISSend() and MPI IRecv() are not
supported.

4. The apeNEXT network has a 3D-torus
topology and non-homogeneous communi-
cation are allowed only if sender and re-
ceiver are connected by a direct link. For
homogeneous network operations (when all
nodes execute the same instructions, send-
ing/receiving data in/from the same direc-
tion) the hardware allows routing across up
to three orthogonal links to all nodes on
a cube, i.e. connecting nodes at distance
(∆x, ∆y, ∆z) with |∆i| ≤ 1. Other com-
munications (like sending data from node
(0, 0, 0) to node (2, 0, 0) are not allowed.

5. There is no posting mechanism imple-
mented, synchronous mode and ready mode

can’t be supported.

4.3 Implemented Functions 7

MPI name Description

MPI SUCCESS Successful return code
MPI ERR BUFFER Invalid buffer pointer
MPI ERR COUNT Invalid count argument
MPI ERR TYPE Invalid datatype argument
MPI ERR TAG Invalid tag argument
MPI ERR TOPOLOGY Invalid topology
MPI ERR UNKNOWN Unknown error
MPI COMM WORLD All nodes involved into operation
MPI COMM SELF Only local node involved
MPI MAX PROCESSOR NAME Len of buffer for storing node name
MPI ANY TAG Don’t care about TAG of message
MPI PROC NULL Empty source/destination
MPI VERSION Major version, (=1)
MPI SUBVERSION Minor version, (=1)

Tab. 5: Main MPI constants.

6. As mentioned in section ”Data types
on apeNEXT” [2.4], we do not support
MPI PACKED and MPI CHAR data types.

7. There are two send functions implemented:
MPI Bsend() and MPI APE Send(). Stan-
dard MPI Send() defaults to MPI Bsend().
MPI APE Send() provides an apeNEXT spe-
cific send operation.

Roughly speaking, we expect the user of our
MPI implementation to use the SIMD program-
ming model.

4.2 APE Mode Send/Receive

To allow users to make more efficient use of the
network or to send data in non-homogeneous
mode between two, directly connected nodes we
provide two new functions:

MPI APE Send(void *d, int cnt, int dst)

This function sends data d to the FIFO
of hardware link for the corresponding
direction and hardware starts to transmit
it to dst. MPI APE Send() can finish before
data was send.

MPI APE Recv(void *d, int cnt, int src)

This initiates receive operation and stores
data to memory. MPI APE Recv() opera-
tion will be finished only after successefull
data transmission.

The length of the data is limited by the max-
imum message size, supported by the hardware,

i.e. 64 words1. The user has to take care that
the receive the queues are not been used between
call of MPI APE Send() and MPI APE Recv().

4.3 Implemented Functions

• MPI Standard functions implemented for
APE:

MPI Init() Initialize MPI system

MPI Initialized() Checks, if MPI is initial-
ized or not.

MPI Finalize() Switch off MPI.

MPI Abort() Immediately stop execution of
program.

MPI Comm size() Get number of nodes.

MPI Comm rank() Get unique node id.

MPI Get processor name() Get string con-
taining name of node.

MPI Barrier() Wait until all nodes go to this
barrier.

MPI Wtime() Get timer value to measure exe-
cution time.

MPI BCast() Broadcast some data to all nodes
from root node.

MPI Allreduce() Makes group operation on
all nodes, like sum or product.

MPI Send() Send data from one node to an-
other.

MPI Bsend() Send data from one node to an-
other in buffered mode.

MPI Recv() Receive data in buffered mode.

1 Size of each word is 128 bit.

8 4 IMPLEMENTATION DETAILS

MPI Sendrecv() Send and receive data (shift
operation).

MPI Sendrecv replace() Same like

MPI Sendrecv().

• Non MPI Standard functions implemented
for APE:

MPI APE Send() Send data to neighbor node in
APE mode.

MPI APE Recv() Receive data in APE mode.

MPI GetNodeAbsX() Returns X coordinate of
node.

MPI GetNodeAbsY() Returns Y coordinate of
node.

MPI GetNodeAbsZ() Returns Z coordinate of
node.

MPI GetNextNodeX() Returns node id of next
node in X+ direction.

MPI GetPrevNodeX() Returns node id of next
node in X− direction.

MPI GetNextNodeY() Returns node id of next
node in Y + direction.

MPI GetPrevNodeY() Returns node id of next
node in Y − direction.

MPI GetNextNodeZ() Returns node id of next
node in Z+ direction.

MPI GetPrevNodeZ() Returns node id of next

node in Z− direction.

4.4 MPI Examples

Here is example of how to execute the
MPI Allreduce() function. We initialize an ar-
ray on each node by some bulk data and make
complete the global sum of it.

// Example 2: Using MPI_Allreduce()

#include "mpi.h"

#define MAX 5

int main(){

int i, res, source, dest;

int i_in[MAX], i_res[MAX];

double time;

MPI_Init(0, 0);

time = MPI_Wtime();

// Initialize array

for (i=0; i<MAX; i++) {

i_in[i] = i+node_abs_id;

i_res[i] = 0;

}

// Calling Allreduce()

res = MPI_Allreduce(i_in, i_res,

MAX, MPI_INT, MPI_SUM,

MPI_COMM_WORLD);

// Output results

printf("-- Allreduce(%d) --\n", res);

for (i=0; i<MAX; i++) {

printf("i[%d]=%d\n", i, i_res[i]);

mfputi(0, 0, 0, machine_size_x-1,

machine_size_y-1,

machine_size_z-1, i_res[i]);

}

// Measure execution time

time = MPI_Wtime() - time;

printf("Seconds : %f.\n", time);

MPI_Finalize();

return 0;

}

In the next example we execute
MPI Sendrecv() to shift data in X+ direction.

// Example 3: Using MPI_Sendrecv()

#include "mpi.h"

#define MAX 5

int main(int *argc, char *argv[]){

int i, rank, size, res;

int source, dest;

double i_in[MAX], i_res[MAX];

double time;

char c[MPI_MAX_PROCESSOR_NAME];

MPI_Status status;

MPI_Init(argc, argv);

time = MPI_Wtime();

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Get_processor_name(c, &i);

printf("Node: %s\n", c);

// Initialize array

for (i=0; i<MAX; i++) {

i_in[i] = i * time;

i_res[i] = 0;

}

// Calculating source and dest

dest = GetNextNodeX(rank);

source = GetPrevNodeX(rank);

// Calling Sendrecv()

res = MPI_Sendrecv(i_in, MAX,

9

MPI_DOUBLE, dest, 0, i_in,

MAX, MPI_DOUBLE, source, 0,

MPI_COMM_WORLD, &status);

// Output

printf("-- Sendrecv(%d) --\n", res);

for (i=0; i<MAX; i++) {

printf("i[%d]=%d\n", i, i_res[i]);

mputi(0, 0, 0, machine_size_x-1,

machine_size_y-1,

machine_size_z-1, i_in[i]);

printf("r[%d]=%d\n", i, i_res[i]);

mputi(0, 0, 0, machine_size_x-1,

machine_size_y-1,

machine_size_z-1, i_res[i]);

}

time = MPI_Wtime() - time;

printf("Seconds : %f.\n", time);

MPI_Finalize();

return 0;

}

5 BENCHMARKS

To check the efficiency of MPI for apeNEXT we
executed the following benchmarks:

global sum: Perform a global reduce operation
(sum, max, min, product) across all the
nodes using MPI Allreduce(). For exam-
ple if we have N nodes and each node
k stores an array ak[i]. After execut-
ing MPI Allreduce() using MPI PROD, each
node will contain an array b[i], where b[i] =
∏N

j=0
aj [i].

0 5 10 15 20
N

0

0.001

0.002

0.003

0.004

0.005

se
c

2x1x1
2x2x2
4x2x2

Fig. 6: Bandwidth of MPI Allreduce() depending
from length of array. Each line corresponds to dif-
ferent number of processors involved into operation.

ping-pong: Perform network operations where
all nodes send data in one direction by ex-
ecuting MPI Send() and receive data using
MPI Recv(), followed by a data transfer in
the opposite direction.

sendrecv: Perform network operations where
all nodes send and receive by calling
MPI Sendrecv().

All benchmarks test the efficiency of the net-
work (including memory access), global sum (see
Fig. 6) also involves the mathematical unit of
apeNEXT. We did run all benchmarks several
times with different data length and compared
bandwidths.

We executed our benchmark code on two pro-
totype nodes of apeNEXT. The measured band-
width is shown in Fig. 7. The processors were
running at a clock frequency of 120 MHz. The
gross bandwidth was therefore 120 MBytes per
second. Due to the hardware protocol overhead
we can expect to achieve only about 75% of the
gross bandwidth, i.e. about 90 MBytes per sec-
ond. As can been seen from Fig. 7 we get already
close to this limit.

1 100 10000 1e+06
Bytes

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

B
yt

es
 /

se
c

apeNEXT / this MPI
PC cluster / MPICH

Fig. 7: Bandwidth of MPI Sendrecv() depending
from length of array. The lower two horizontal
lines show the maximum effective and gross network
bandwidth for apeNEXT, the upper the maximum
bandwidth of the Myrinett network.

For comparison we also plotted the numbers
obtained on a PC cluster of the John from
Neumann Institute (NIC). This cluster has a
Myrinett network for internode communication.
For a comparison of both results some comments
should be taken into account. The PC cluster
was installed in 2001 and therefore does not pro-
vide up-to-date technology. On the other hand,
the apeNEXT processors are not yet running at
full speed. The expected final clock speed is 180-
200 MHz, i.e. the bandwidth will increase by

10 References

about 50-66%. The total bandwidth per node
is up to 3 times larger, as an apeNEXT node
can communicate through up to 3 bi-directional
network links concurrently. The PC cluster pro-
vides only one link per node (i.e. two proces-
sors).

6 CONCLUSION AND OUTLOOK

My work in the APE project included several
steps:

• Understanding the apeNEXT architecture:
both software and hardware details.

• Learning the MPI Standard.

• Understanding and discussing, what parts
of MPI can be implemented for apeNEXT.

• Implementation of MPI.

• Testing, debugging, optimizing functions.

• Making benchmarks. Comparing with
other architectures.

• Writing student report, technical documen-
tation for implementation and documen-
tation for future developers of MPI for
apeNEXT.

I have completed the implementation, debug-
ging, testing, benchmarking and documentation
of a relevant sub-set of the MPI Standard. Fu-
ture development activities might add a few
functions and certainly should spend further ef-
fort on optimization of the library to improve
performance.

Working in APE Group was very interesting
for me. I never before worked so close with su-
percomputers, which required to analyze assem-
bler and microcode and to think of optimization
on the hardware level. I executed my code on
prototype hardware at DESY Zeuthen and at
INFN in Ferrara. Discussing many implementa-
tion details, algorithms and hardware features
with people from the APE group allowed me to
apply and increase my knowledge in computer
science. Writing my code I also found a num-
ber of bugs in the C-compiler(nlcc), which have
been fixed on the fly. Thus I found my research
work in the APE project very interesting and I
extended my knowledge on computer architec-
tures, processor design and supercomputers and
on computer science at all.

7 ACKNOWLEDGMENTS

I want to thank all people from APE: Hubert,
Dirk, Norbert, Max and Guillaume for sharing
with me their research work and for the interest-
ing discussions we had. I’d like to express a spe-
cial gratitude to Hubert Simma and Dirk Pleiter
for there patient to answer any of my questions,
showing me small tricks in big supercomputer,
having always creative ideas made my working
time with you very interesting and enjoyable.
And again my special thanks to Dirk for the
guidance in writing the documentation, fixing
bugs in my code, help with the benchmarks and
for the good sense of humor in everyday work.

References

[1] Message Passing Interface Forum, “MPI:
A Message-Passing Interface Standard”,
1995.

[2] F. Bodin et al., “The apeNEXT Project”,
CHEP’03, La Jolla, California,
March 25-28, 2003

[3] C.W. Fraser, D.R. Hanson, D. Hansen, “A
Retargetable C Compiler: Design and Im-
plementation”, 1995.

[4] D. Pleiter, D. Sokolov, “MPI for apeNEXT”,
DESY, 2004

[5] APE Group DEZY Zeuthen Web-site,
http://www-zeuthen.desy.de/ape

[6] MPI Forum Community,
http://www.mpi-forum.org

[7] apeNEXT: a Multi-TFlops Computer
for Elementary Particle Physics, APE-
Collaboration

[8] Neil MacDonald, Elspeth Minty,
Tim Harding, Simon Brown, “Writing
Message-Passing Parallel Programs with
MPI”, Course Notes, Edinburgh Par-
allel Computer Center, The University
of Edinburgh

